

IATA Open Air API Standards

and Best Practices
Version 1.2

August 2021

2 IATA Open Air API Standards and Best Practices

Contents

1. Introduction ... 5

1.1. Purpose ..5

1.2. Audience..5

1.3. Document Structure ...5

2. Open Air API Standard .. 5

2.1. Objective ...5

2.2. Interpretation ...5

2.3. Standard APIs ..5

2.3.1 Compliant – Proprietary API ...6

2.3.2 Conformant – Industry Standard API..6

2.4. API specification ..6

2.4.1 OpenAPI Object ...7

2.4.2 Info Object ...7

2.4.3 URI ...8

2.4.4 Server Object ...8

2.4.4.1 URL ... 8

2.4.5 Components Object ..9

2.4.6 Paths Object ...9

2.4.6.1 Resource Naming ... 9

2.4.7 Paths Item Object .. 10

2.4.8 Operation Object ... 10

2.4.9 Parameter Object .. 10

2.4.10 Request Body Object .. 11

2.4.11 Responses Object .. 11

2.4.12 Response Object... 11

2.4.13 Tag Object ... 11

2.4.14 Schema Object .. 12

2.4.14.1 Schema Definition .. 13

2.4.14.2 Primitive Data Types ... 18

2.4.14.3 Traceability .. 19

2.4.14.4 Error Structure ... 19

2.4.15 Security Scheme Object .. 20

3. Appendix ... 21

3.1. Airline Value Chain .. 21

3.1.1 Artifacts ... 23

3.1.2 Business capability Mapping .. 23

3.2. Versioning .. 23

3.2.1 Release Overview .. 23

3.2.2 Release Deliverable Versioning ... 24

3.2.2.1 AIDM entity (ABIE) version ... 24

3.2.2.2 XML Schema version ... 24

3 IATA Open Air API Standards and Best Practices

3.2.2.3 API versioning guideline ... 24

3.2.2.4 XMI Export .. 25

3.2.2.5 OAS Schema version ... 25

4. Glossary... 26

5. References ... 26

4 IATA Open Air API Standards and Best Practices

Revision History

Version Date Description of change

1.0 May 2020 Initial version

1.1 February 2021 OAS Schema mapping with AIDM elements: 2.4.14 Schema Object;

Resource naming: 2.4.3 URI, 2.4.4 Server Object, 2.4.6 Paths Object;

Versioning: 2.4.2 Info Object, 3.2 Versioning.

1.2 August 2021 OAS Schema mapping with AIDM elements: 2.4.14 Schema Object;

Description of industry standard APIs.

5 IATA Open Air API Standards and Best Practices

1. Introduction

1.1. Purpose
IATA’s Open Air initiative was created to develop industry standards and best practices for the use of RESTful API

technology in the airline industry, and an API ecosystem conformant to the standards.

The purpose of this document is to define a common technical approach to describing API Definitions so that

industry parties can benefit from a shared understanding leading to efficiency of API development, understanding,

implementation and use of conformant APIs.

1.2. Audience
This standard assumes the reader has an understanding of the OAS 3.0 specification, and AIDM methodology. This

document is intended for:

• API developers in the airline industry, who have experience in RESTful API design and development;

• Enterprise Architects responsible for the coherent strategies of their companies’ integration policies;

• Planners and Managers responsible for delivering business integration solutions.

1.3. Document Structure
The document covers each OAS Object and its fields or patterned fields where there is a variation with the OAS

Standard, or where the Object is required but no variation is defined. The OAS nodes affected by this standard are

shown in Figure 1 – Open API Standards Scope.

Variances in the standard for an Object that appears in more than one place, that is, more than one node in the OAS

specification are detailed in a sub-section of the section covering the Object.

The sections detailing each object are ordered as they appear in the OAS Standard.

2. Open Air API Standard

2.1. Objective
The objective of this standard is to ensure API Documents are consistent in their structure, nomenclature and

semantics and to enable the data structures in conformant messages to be validated; JSON Schema keywords for

validation are utilized to achieve this.

2.2. Interpretation
When describing the Best Practices and the Checklist, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL",

"SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be

interpreted as described in RFC 2119.

2.3. Standard APIs
There are 2 types of standard APIs supported in the Open Air program.

https://tools.ietf.org/html/rfc2119

6 IATA Open Air API Standards and Best Practices

1. Compliant API

2. Conformant API

2.3.1 Compliant – Proprietary API
IATA recommends the API providers to follow the industry adopted Open Air API Standards and Best Practices in

the proprietary API. The provider may design and develop the proprietary API to address any business scenario in

support of any stages or any steps across the Airline Value Chain, which is shown in Figure 5.

An airline industry relevant API provider, who follows the standards and successfully delivers the API, may apply for

Open Air compliance certification for the proprietary API. The certified API is recognized as a Compliant API and is

listed in the Open Air Industry API Registry, providing visibility to the industry.

2.3.2 Conformant – Industry Standard API
A Conformant API is an API designed by the industry standard development bodies, for example, the business and

technology working groups and boards under IATA PSC governance, to address a common business scenario

faced by most of the applicable industry parties. The business scenario can be from any stages or steps across the

Airline Value Chain capabilities shown in Figure 5.

A Conformant API specification MUST adhere to the Open Air standard and Best Practices. The delivery of IATA

Conformant APIs MUST follow industry governance process under the Passenger Standards Conference (PSC).

The business process and requirement MUST be adopted by corresponding business boards, for example, Plan

Board, Shop-Order Board, Pay-Account Board, Travel Board, etc, and the API specification, as well as data model

MUST be adopted by Architecture and Technology Strategy Board (ATSB).

2.4. API specification
This section defines the Open Air Standard and Best Practice for API specification. API specification is a reference

manual on the API capability, meaning how the API behaves and what to expect from the API. A well-documented

specification will help developers to understand and adopt the API.

An IATA Open Air API document MUST be RESTful, MUST adhere to OAS 3.0 standard, and MUST use HTTPS

protocol. All data structures MUST be defined using JSON Schema with modifications as defined in the OAS 3.0

standard. Each Open Air API document MUST be available in JSON format, and MAY in addition be available in

YAML format.

The OpenAPI Specification (OAS) defines a standard, language-agnostic interface to RESTful APIs. The Open Air

Standard leverages OAS 3.0 and covers the usage of the OAS 3.0 objects and fields shown in Figure 1 below. This

document does not intend to describe the usage of all required or optional OAS objects and related fields. Any API

defined using the Open Air Standard MAY make use of any other objects and fields of the OAS 3.0 Standard, but

any such usage MUST NOT affect the meaning or behaviour of the objects and fields covered by this standard.

https://www.iata.org/en/programs/workgroups/passenger-standards-conference/architecture-technology-strategy/
https://www.iata.org/en/programs/workgroups/passenger-standards-conference/architecture-technology-strategy/

7 IATA Open Air API Standards and Best Practices

Figure 1 – Open API Standards Scope

2.4.1 OpenAPI Object
OpenAPI Object is the root document object of the OAS 3.0 specification.

In IATA standard API specification, the value of openapi attribute MUST be 3.0 or a minor version there-of. It means

the API specification is documented using Open API Specification 3.0.

Example 1

"openapi": "3.0.2"

2.4.2 Info Object
Info Object provides metadata about the API.

Each specification (OAS) MUST have its own version. Version notation MUST follow Semantic Versioning 2.0.0.

Section 3.2 describes the versioning best practice.

Example 2

"info": { "version": "1.0.1"

…

 }

https://semver.org/

8 IATA Open Air API Standards and Best Practices

2.4.3 URI
A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies a resource. URI Internet

Standard Specification is defined in RFC3986.

As resource oriented design approach, it is critical to define a meaningful URI for the resource, in order to help

developers to understand and use the RESTful API.

Figure 2 – URI components below is the example that shows the components in the URI.

Figure 2 – URI components

The standard and best practice on URI is defined in 2.4.4 Server Object and 2.4.6 Paths Object.

2.4.4 Server Object
Servers Object include an array of Server Objects. The Server Object provides connectivity information to a target

server.

2.4.4.1 URL

To keep the consistency of URL formatting:

1. URL SHOULD follow URI specification RFC3986.

2. URL SHOULD define the scheme and authority components of URI specification.

Example 3 - URI in the API

HTTP POST
https://api.example.com/v1/inventory-management/managed-entities/{id}/install-script-location

URI component Example Related OAS 3 object/field

scheme https Server.url field

authority api.example.com Server.url field

path /v1 Major version of API spec in either

Server.url field or Paths Object

path /inventory-

management/managed-

entities/{id}/install-script-location

Paths Object

query Parameter Object

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://api.example.com/v1/inventory-management/managed-entities/%7bid%7d/install-script-location

9 IATA Open Air API Standards and Best Practices

3. All characters in URL SHOULD be in lowercase.

4. A hyphen (-) MUST be used in URL to separate multi-word phrases, except that the parameter name MUST

follow camel case as naming convention as described in section 2.4.9 Parameter Object.

Example 4 – URL

http://api.example.com/inventory-management/managed-entities/{id}/install-script-location //More

readable

http://api.example.com/inventory-management/managedEntities/{id}/installScriptLocation //Less

readable

5. File extensions MUST NOT be included in the server URL.

It does not add any value to use file extension and makes the URL longer. Instead of using file extensions,

mime-type should be used to identify the type of data.

Description field MUST be defined for each Server Object structure.

Example 5 - Server Object

"servers": [{

 "url": "https://test.iata.org",

 "description": "User Acceptance Testing environment"

 }, {

 "url": "https://prod.iata.org",

 "description": "Production environment”

 }]

2.4.5 Components Object
Holds a set of reusable objects for different aspects of the OAS. All objects defined within the components object

will have no effect on the API unless they are explicitly referenced from properties outside the components object.

There are no variations to the OAS Standard defined for this object.

2.4.6 Paths Object
The Paths Object holds the relative paths to the individual endpoints and their operations. The path is appended to

the URL from the Server Object to construct the full URL of the resource.

2.4.6.1 Resource Naming

In REST, primary data representation is called Resource. Generally, a resource is a thing not an action and is

identified by a noun. HTTP Verbs MUST be used to define the action to be performed on the Resource.

Table 1 categories resources and defines the nature of the resource name for each category.

Resource Category Name Style

Collection Plural Noun

10 IATA Open Air API Standards and Best Practices

Document Singular Noun or Unique Identifier

Controller

(such as business process

resource)

A controller resource models a procedural concept. Use “verb” to define a

directive action to be performed by a Resource.

e.g. http://api.example.com/cart-management/users/{id}/cart/checkout
Table 1 - Resource Naming Conventions

Figure 3 - Resource naming structure shows the general pattern of a Resource Name being:

Figure 3 - Resource naming structure

In order to keep the consistency in Resource Naming:

1. The Root and Child Resource Name MUST be the names of ABIEs or ASBIE Roles optionally preceded with

a Status separated by a forward slash (“/”).

2. Resource name SHOULD be identified by a noun, unless the archetype is Controller.

3. Resource name MUST be plural unless it is a singleton resource in which case a singular noun MUST be

used.

4. The Child Resource UID MUST be the unique identifier components of the ABIE separated by a hyphen.

5. The hierarchical structure of a Resource Name MUST be constructed by traversing through the Integrated

Data Model in the AIDM moving from an ABIE (Resource) to a child ABIE (Resource) via an ASBIE

(Hierarchical Link).

6. Controller Resource name MAY be a verb, and MAY be a verb with a suffix, for example "-jobs", so that the

resource could be accessed via proper UID, for example job ID.

2.4.7 Paths Item Object
Describes the operations available on a single path. A Path Item MAY be empty, due to ACL constraints. The path

itself is still exposed to the documentation viewer but they will not know which operations and parameters are

available.

There are no variations to the OAS Standard defined for this object.

2.4.8 Operation Object
Operation Object defines the HTTP methods can be used to access a path. A unique operation is a combination of a

path and an HTTP method. A single path can support multiple operations.

OAS 3.0 supports HTTP methods of get, post, put, patch, delete, head, options, and trace. In Operation Objects, the

specification MUST follow all HTTP methods definition and guidance in RFC7231.

2.4.9 Parameter Object
Parameter Object describes a single operation parameter. A unique parameter is defined by a combination of a

name and location.

http://api.example.com/cart-management/users/%7bid%7d/cart/checkout
https://swagger.io/specification/#securityFiltering
https://tools.ietf.org/html/rfc7231

11 IATA Open Air API Standards and Best Practices

There are four possible parameter locations specified by the “in” field:

1. path - Used together with Path Templating, where the parameter value is actually part of the operation's

URL. The path parameter is required in all cases to access the API.

2. query - Parameters that are appended to the URL. e.g /users?role=admin

3. header - Custom headers that are expected as part of the request. Refer to RFC7230 for more information

4. cookie - Used to pass a specific cookie value to the API. Refer to RFC6265 for more information

Path parameter SHOULD be used to identify a specific resource via UID, e.g get /users/{id}.

Query parameter SHOULD be used to filter or sort the sources.

The parameter name MUST follow camel case as naming convention.

2.4.10 Request Body Object
The Request Body Object describes a single request body, which is used to send data via REST API.

A Request Body SHOULD be used to send resource information, that is, content, in order to create or update the

resource, in POST or PUT operations respectively.

2.4.11 Responses Object
A container for the expected responses of an operation. The container maps a HTTP response code to the

expected response.

There are no variations to the OAS Standard defined for this object.

2.4.12 Response Object
Response Object describes an expected response of an operation. A response is defined by its HTTP status code

and the data returned in the response body and/or headers.

In IATA standard API specification:

1. Response MUST be defined for HTTP status codes of 2xx (successful), 4xx (Client Error), and 5xx (Server

Error). Refer to RFC7231 for the available status code and definition.

2. The media type “application/json” MUST be used by default.

2.4.13 Tag Object
The Tag Object adds metadata, including name and description, to a single tag which can be used for logical

grouping of operations for the specific resource. In OpenAPI Object, the tags fields MUST be denoted to declare

the list of Tag Object used in Operation Object in the specification.

In Operation Object, tags field contains a list of tag names of Tag Objects defined within OpenAPI Object. The

operation.tags field MUST include a list of Airline Value Chain business capabilities key words (refer to Appendix 3.1

for more information).

For example, “Flight Status” API has “Communication Management” as Business Capability.

https://tools.ietf.org/html/rfc7230#page-22
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc7231

12 IATA Open Air API Standards and Best Practices

Example 6 – Tags

{

 "openapi": "3.0.0",

 "tags": [{

 "name": "communication-management",

 }],

 "paths": {

 "/v1/flights": {

 "get": {

 "tags": ["communication-management"]

…

}

2.4.14 Schema Object
The Schema Object allows the definition of input and output data types. These types can be objects, but also

primitives and arrays. This object is an extended subset of the JSON Schema published Draft 5 which includes the

Core “draft-wright-json-schema-00” and the Validation “draft-wright-json-schema-validation-00”. Unless stated

otherwise, the property definitions follow this standard.

In IATA standard API specification:

1. If the data type is object, Schema object MUST be defined within Components Object, which can be

referenced from other objects in the specification

2. If the data type is primitives, schema object MAY be defined in line with the parent structure

3. Regular expressions SHOULD be defined using the JSON Schema keyword “pattern”; for data validation

purposes.

Example 7

 "parameters”: [{

 "name”: "agencyCode",

 "in”: "path",

 "required”: true,

 "schema”: {

 "pattern”: "^[0-9]{8}$|^[0-9]{7}$",

 "type”: "string"

 }

 }]

4. An Examples structure MUST be defined for all schema objects in the API specification.

https://tools.ietf.org/html/draft-wright-json-schema-00

13 IATA Open Air API Standards and Best Practices

2.4.14.1 Schema Definition

This section defines the standard for describing reusable data structures that appear as Schema Objects within the

Components section.

The organization of data structures in this standard is similar to the Venetian Blind concept in that all object

definitions are defined globally and may be reused by other objects in the Schemas section.

All data structures in IATA standard APIs MUST be derived from the AIDM, with the exception of Experimental

Content.

Experimental Content is any schema data structure in an API specification, which has not been derived from the

AIDM. Developers may want to extend the standard schema object to fulfill the business requirements in the

proprietary API, so Experimental Content offers flexibility of extension. Experimental Content MUST NOT appear in

any Conformant API specifications (Industry Standard Open API specifications published by IATA).

Table 2 defines how to represent the data element from AIDM in an OAS schema object. All the fields in OAS

Schema template described in Table 2 are mandatory, except where it is indicated otherwise.

Figure 4 is the meta-model diagram for the elements in AIDM integrated data model.

14 IATA Open Air API Standards and Best Practices

Figure 4 Integrated Model Meta-Model elements

Element

Type

AIDM Derivation OAS Schema Template

Object ABIE

"<name>": {

 "title": "<Fully Qualified Name of data element>",

 "description": "<Description of data element>",

 "type": "object"
}

Object BDT with SUP

with Default

"<name>": {

 "title": "<Fully Qualified Name of data element>",

 "description": "<Description of data element>",

15 IATA Open Air API Standards and Best Practices

Indicator = “Y”

exists

 "type": "object"

}

Object BDT without SUP

with Default

Indicator = “Y”

exists

"<name>": {

 "title": "<Fully Qualified Name of data element>",

 "description": "<Description of data element>",

}

Object

Mandatory

Elements

BBIE

SUP

ASBIE

XOR

"required": ["<mandatory element name>"…]

Property BBIE

"properties": {

 "<name>": {

 "title": "<Fully Qualified Name of data element>",

 "description”: "<Description of data element>",

 "$ref": "#/components/schemas/<name of BDT>"
 }
}

Property CON for a BDT

where SUP with

Default Indicator

= “Y” exists

if the property is governed by a primitive

"properties": {

 "value": {

 "title": "<Fully Qualified Name of data element>",

 "description": "<Description of data element>",

 "type": "<primitive name>",

 "format": "<format string>", (optional)
 "pattern": "<Pattern Tag Value>", (optional)
 "maxLength": "<Maximum Length Tag Value>", (optional)
 "minLength": "<Minimum Length Tag Value>", (optional)
 "maximum": "<Maximum Inclusive Tag Value>", (optional)
 "minimum": "<Minimum Inclusive Tag Value>" (optional)
 "exclusiveMaximum": "<Maximum Exclusive Tag Value>", (optional)
 "exclusiveMinimum": "<Minimum Exclusive Tag Value>" (optional)

 }
}

or if the property is governed by an enumeration

"properties": {

 "value": {

 "title": "<Fully Qualified Name of data element>",

 "description”: "<Description of data element>",

 "$ref": "#/components/schemas/<name of enumeration>"
 }

}

Property CON for a BDT

where SUP with

Default Indicator

= “Y” does not

exists

if the property is governed by a primitive

 "type": "<primitive name>",

 "format": "<format string>", (optional)
 "pattern": "<Pattern Tag Value>", (optional)
 "maxLength": "<Maximum Length Tag Value>", (optional)
 "minLength": "<Minimum Length Tag Value>", (optional)
 "maximum": "<Maximum Inclusive Tag Value>", (optional)
 "minimum": "<Minimum Inclusive Tag Value>" (optional)
 "exclusiveMaximum": "<Maximum Exclusive Tag Value>", (optional)
 "exclusiveMinimum": "<Minimum Exclusive Tag Value>" (optional)

or if the property is governed by an enumeration

 "$ref": "#/components/schemas/<name of enumeration>"

16 IATA Open Air API Standards and Best Practices

Property SUP with Default

Indicator = “Y”

if the property is governed by a primitive

"properties": {

 "<name>": {

 "title": "<Fully Qualified Name of data element>",

 "description": "<Description of data element>",

 "type": "<primitive name>",

 "format": "<format string>", (optional)
 "pattern": "<Pattern Tag Value>", (optional)
 "maxLength": "<Maximum Length Tag Value>", (optional)
 "minLength": "<Minimum Length Tag Value>", (optional)
 "maximum": "<Maximum Inclusive Tag Value>", (optional)
 "minimum": "<Minimum Inclusive Tag Value>" (optional)
 "exclusiveMaximum": "<Maximum Exclusive Tag Value>", (optional)
 "exclusiveMinimum": "<Minimum Exclusive Tag Value>" (optional)

 }
}

or if the property is governed by an enumeration

"properties": {

 "<name>": {

 "title": "<Fully Qualified Name of data element>",

 "description”: "<Description of data element>",

 "$ref": "#/components/schemas/<name of enumeration>"
 }

}

Association

[maximum

cardinality>

1]

ASBIE "< target or source role name | target or source ABIE name>": {

 "title": "<Fully Qualified Name of data element>",

 "Description": "<Description of data element>",

 "type": "array",

 "minitems": <minimum cardinality>,

 "maxitems": <maximum cardinality >,

 "items": {

 "$ref": "#/components/schemas/<name of referenced object>"
 }
}

Association

[maximum

cardinality=

1]

ASBIE "< target or source role name | target or source ABIE name>": {

 “title”: "<Fully Qualified Name of data element>",

 “description”: "<Description of data element>",

 "$ref": "#/components/schemas/<name of referenced object>"

}

Enumeratio

ns
ENUM

Code List

Entry

"<name>": {
 “title”: "<Fully Qualified Name of data element>",
 “description”: "<Description of data element>.

Valid Values: <code list entry name n> - <Description

of code list entry n>; …",
 "type": "<Restricted Primitive>",
 "enum": ["<code list entry name>"…]

}
or for open enumerations (that is, enumerations
with no Code List Entry)
"name": {
 “title”: "<Fully Qualified Name of data element>",
 “Description”: "<Description of data element>",
 "type": "<Restricted Primitive>",

17 IATA Open Air API Standards and Best Practices

 "pattern": "<Pattern Tag Value>"

 (optional)
}

Association

Mutual

Exclusivity

(Association

 [maximum

cardinality>

1])

XOR "<XOR Name>": {

 "oneOf": [

{

 “title”: "<Fully Qualified Name of data element>",

 “Description”: "<Description of data element>",

 "type": "array",

 "minitems": <minimum cardinality>,

 "maxitems": <maximum cardinality >,

 "items": {

 "$ref": "#/components/schemas/<name of referenced object>"

 }

}
]

}

Association

Mutual

Exclusivity

(Association

 [maximum

cardinality=

1])

XOR "<XOR Name>": {
 "oneOf": [

{

 “title”: "<Fully Qualified Name of data element>",

 “description”: "<Description of data element>",

 "$ref": "#/components/schemas/<name of referenced object>"

}

]
}

Table 2 - Implementing AIDM Logical Elements

In addition, Table 3 defines how to construct the physical name of an element from the business name.

Source / PIM Element Element Name* JSON Schema Type

ABIE ABIE Name Object

BBIE BBIE Name Property

BDT BDT Name Object

CON where SUP with Default

Indicator = “Y” exists

“Value” Property

CON where SUP with Default

Indicator = “Y” does not exist

 Not Used

SUP where Default Indicator = “Y” SUP Name Property

SUP where Default Indicator = “N” Not used

ENUM ENUM Name + “Enum” Object

Code List Entry Code List Entry Name Enum Array Element

ASBIE If present, ASBIE Source or Target

Role Name otherwise ASBIE Source

or Target ABIE Name

Reference

PRIM See Section 2.4.14.2 Primitive Data

Types

Primitive

Table 3 - Nomenclature

* Note that Element Names MUST be in camel case except for Schema Object names which MUST be in Pascal case.

18 IATA Open Air API Standards and Best Practices

All element name MUST have AIDM abbreviations applied in order of length starting with the longest. For example, if there is an abbreviation of

PO for Post Office and an abbreviation of PST for Post, if you apply PST abbreviation first, the outcome will be PST Office, whereas applying the

longest phrase to be substituted will result in the outcome of PO; which is the desired result. In addition, the name of a structured SUP

attributes must have the period punctuation mark (.), used as a grouping mechanism, removed.

An objective of this standard is the validation of the data content of instances of OAS Documents. Keywords, as

well as data structure, are used to address this objective. Table 4 identifies the allowable keywords for validating

the content of data and the cardinality of arrays.

Keyword Derived from Restriction Specification Name

minlength Minimum Length

maxlength Maximum Length

minimum Minimum Inclusive

maximum Maximum Inclusive

exclusiveMinimum Minimum Exclusive

exclusiveMaximum Maximum Exclusive

pattern Pattern

 Derived from ASBIE Source or Target Multiplicity

minitem Min Items

maxitems Max Items
Table 4 - Allowable Keywords for Validation

2.4.14.2 Primitive Data Types

In the AIDM a Content Component and a Supplementary Component may be classified by an enumeration or by a

primitive data type. If an attribute is classified by an enumeration the Primitive Data Type can be found in a tagged

value called “restrictedPrimitive”; otherwise the classifier is the primitive data type. In either case the primitive data

type must be transformed into a platform dependent data type as defined in Table 5 below.

Reference to PRIM in AIDM Reference to standard OAS data type Format

AnyURI string uri

Binary string binary

Boolean boolean

DatePoint string date

Decimal number double

Double number double

Float number float

Integer integer int32

NormalizedString string

String string

TimeDuration string duration

TimePoint string date-time

TimeOfDay string hh:mm:ss

Token string byte

Table 5 - Implementation of Primitive Data Types

19 IATA Open Air API Standards and Best Practices

Example 8 - Schema object

"components": {

 "schemas": {

 "customer": {

 "type": "object",

 "properties": {

 "active": {

 "type": "boolean"

 },

 "code": {

 "pattern”: "^[0-9]{8}$",

 "type": "string"

 },

 },

 "example": {

 "code": "98210019",

 "active": true

 }

 }}}

2.4.14.3 Traceability

No traceability from AIDM to API data elements is demanded. In future the keyword “$comments” may be used to

describe the derivation of a data element from the AIDM. Including but not limited to the node path and name of the

diagram used to generate the data structure and the date and time it was generated, and the navigation path and

GUID of the source data element.

2.4.14.4 Error Structure

IATA standard API SHOULD use the below general error object structure within the Component Object to handle

the general error message as part of an API response.

Field

Name

Date

Type

Description Optionality

id string A unique identifier for this specific instance of the error. Optional

status string The HTTP status code applicable to the error. Mandatory

code string an application-specific error code. Optional

title string A short, human-readable summary of the problem that SHOULD

NOT change from occurrence to occurrence of the error, except

for purposes of localization.

Optional

language string The code of the language used in the error message. Not

required when the language is a variant of English.

Optional

detail string a human-readable explanation specific to this occurrence of the

issue.

Optional

20 IATA Open Air API Standards and Best Practices

url string A link to an on-line description of the error where one COULD

find statements pertaining to the consequences of the error and

indications as to actions that might be taken and actions that

should or must not be taken.

Optional

Table 6 - Components of the Standard Error Structure

Example 9 - Error Structure

"components": {

 "schemas": {

 "error": {

 "type": "object",

 "required": ["status"],

 "properties": {

 "id": {"type": "string"},

 "status": {"type": "string"},

 "code": {"type": "string"},

 "title": {"type": "string"},

 "language": {"type": "string"},

 "detail": {"type": "string"},

 "url": {"type": "string"}

 }

 }

 "errors" : {

 "type" : "object",

 "properties" : {

 "errors" : {

 "type" : "array",

 "items" : {

 "$ref" : "#/components/schemas/error"

 }

 }

 }

 }

 }

}

…

 "404": {

 "content": {

 "application/json": {

 "schema": {

 "type": "object",

 "items": {

 "$ref": "#/components/schemas/errors"

 }}}}}

2.4.15 Security Scheme Object
The Security Scheme Object defines a security scheme that can be used by the operations.

In IATA standard API specification:

21 IATA Open Air API Standards and Best Practices

1. APIs SHOULD apply OAuth 2.0 as security mechanism.

2. APIs SHOULD apply OWASP best practices. Additional information can be found at www.owasp.org.

3. Appendix

3.1. Airline Value Chain
Figure 5 below shows a chain of primary activities and their process areas that a firm is operating in the airline

industry performs in order to deliver a valuable product or service to the market.

http://en.wikipedia.org/wiki/Product_(business)
http://en.wikipedia.org/wiki/Service_(economics)
http://en.wikipedia.org/wiki/Market_(economics)

22 IATA Open Air API Standards and Best Practices

Figure 5 - Airline Value Chain Reference Model

Customer Touch-Point Capabilities

Business capabilities needed to deliver the core product to the customer. Organized by the lifecycle of product

delivery.

Operations

23 IATA Open Air API Standards and Best Practices

Business capabilities needed to enable the running of “passenger airline” business. Organized by typical business

planning cycle.

Support & Management

Business capabilities needed to enable the running of “any” business.

3.1.1 Artifacts

3.1.2 Business capability Mapping
The provider should identify the relevant Business Support Capabilities of the API, and specify those capabilities in

the Tag Object of the OAS specification. It helps the API consumers to better understand the business purpose

and benefits of the API.

3.2. Versioning
This main purpose of this section is to describe the API versioning guideline and best practice. To cover the basic

context, it also gives an overview of IATA release, deliverables in the release package and versioning guidelines of

each artifact.

3.2.1 Release Overview
An IATA Release is the fact to package and publish IATA Standards deliverables at the planned schedule. For

example, standard XML schemas generated from the AIDM; OpenAPI specification of standard APIs; export of

complete AIDM model are grouped in one package, after ATSB adoption, etc.

The release number identifies each IATA Release. The format of release number is “IATAYYYY.S”, with “YYYY” as

the year and “S” as release sequence within the year. Example of release number: IATA2018.1 - the first Release in

year 2018, called also 18.1.

Figure 6 Release Overview describe the present and planned deliverables within an IATA release package, the

version example of each deliverable, and where the versioning guideline for that deliverable is defined.

Artifact Description

Business Primary Activity

Entry point of the Business Activities

Business Support Capability

It describes Business Processes capability details for a specific business purpose.

v alue chain Diagram

PrimaryActivity

class Airline1

ProcessArea

24 IATA Open Air API Standards and Best Practices

Figure 6 Release Overview

3.2.2 Release Deliverable Versioning

3.2.2.1 AIDM entity (ABIE) version

There is version property of ABIE (Aggregated Business Information Entity) in AIDM data model. The ABIE version

property is not used as of today, and it is always set as 1.0 by default. Refer to “5.3 ABIE properties” in “AIDM

Guidelines - I3 Info Logical Model v2.2.docx” as part of Ref 7 - AIDM Guidelines.

Open Air group recommends to defining ABIE version in AIDM, to track the evolution of the entities.

3.2.2.2 XML Schema version

Each standard XML schema has its own version defined. The guideline of XML schema versioning is defined in the

section “11 Versioning and schema identification” of “IATA XML Best Practice Document ver1.6.1.doc” as part of

Ref 7 - AIDM Guidelines.

3.2.2.3 API versioning guideline

Each Standard API MUST has its own version defined in the OAS spec, to track the evolution of the API.

The major version of API MUST be included in either Server.url field or Paths Object in the OAS spec. The major

version MUST be consistent for all endpoints in one API spec.

The developer SHOULD NOT use different versions of same JSON schema in one API spec.

Table 7 - API versioning describes the versioning guideline, focused on evolution of major and minor version (as

defined in Semantic Versioning 2.0.0) in the OAS spec. An API is Backwards Compatible when a client program

written to consume the last version of that API will continue to work the same way against its current version.

https://semver.org/

25 IATA Open Air API Standards and Best Practices

Changes in OAS

object

Evolution Info.version

(M)ajor.(m)inor.(p)atch

Major version in Paths

Object or Server.url

Response body

Backward Compatible v M.{m+1}.p /vM

Non-Backward Compatible v {M+1}.0 /v{M+1}

Path Parameter Backward Compatible v M.{m+1} /vM

Non-Backward Compatible v {M+1).0 /v{M+1}

Query parameter Backward Compatible v M.{m+1} /vM

Non-Backward Compatible v {M+1}.0 /v{M+1}

Request Body Backward Compatible v M.{m+1} /vM

Non-Backward Compatible v {M+1).0 /v{M+1}

Table 7 - API versioning

3.2.2.4 XMI Export

The version XMI export of the complete AIDM model is aligned with the IATA release number.

3.2.2.5 OAS Schema version

Open Air group propose to transform the standard entities from AIDM integrated data model and generate the

entities in Schema Object format as defined in Ref 1 - Open API 3.0 Specification. Schema object of OpenAPI 3.0 is

an extended subset of JSON Schema Specification Wright Draft 00.

Open Air JSON common library, which includes all the OAS schema objects generated from AIDM, plans to be

published in the future IATA release. The library will be open for the industry to reuse during in API design phase and

possibly in the development phase as well, for the purpose of standardization to achieve Open Air certification, or

just for API provider to build the proprietary APIs.

Example 10 – Backward compatible API
1. Add a path item, or response

2. Add a path parameter

3. Add an optional query parameter

4. Resource model changes

a) Adding an optional field

b) Changing Mandatory field to Optional field

c) Changing a field pattern in less restrictive way

Example 11 – Non-backward compatible API
1. Add a path parameter

2. Delete path, required parameters or operation

3. Rename parameter/path, which means adding a new one and deleting the old one at the same time

4. Add a constraint on a query parameter (like isRequired)

5. Resource model changes

a) Adding a mandatory field

b) Changing Optional field to Mandatory field

c) Changing a field pattern in more restrictive way

26 IATA Open Air API Standards and Best Practices

The OAS Schema version SHOULD be aligned with the version of corresponding ABIE in AIDM.

4. Glossary
Term Meaning

Camel Case A method of creating a label from a word, acronym, or phrase by capitalizing the

first letter of all words or acronyms except the first and removing all white spaces

and hyphens. All other letters must be in lower case.

AIDM Airline Industry Data Model

ABIE - Aggregated

Business Information

Entity

An ABIE is a collection of related pieces of information in AIDM that together

convey a distinct meaning. An ABIE is the representation of an entity/object class,

contains attributes/properties, and may participate in associations with other

ABIEs.

BBIE - Basic Business

Information Entities

A BBIE represents an attribute of an ABIE.

ASBIE - Association

Business Information

Entity

An ASBIE defines an association between one ABIE (the “associating” ABIE) and

another ABIE (the “associated” ABIE). ASBIEs are UML associations of

AggregationKind either “shared” or “composite”.

BDT - Business Data

Type

A business data type defines the value domain – set of valid values – that can be

used for a particular BBIE. It represents a complex element, as a BDT has one

content component and any number of supplementary components.

PRIM - Primitive Data

Type

A PRIM represents basic building blocks for defining value domains of content and

supplementary components. UN/CEFACT has defined a finite set of PRIMs. A

PRIM may have a set of facets restricting the value domain.

ENUM – Enumeration

Type

An ENUM is a collection of items that is a complete, ordered listing of all of the

items in that collection.

5. References
Name Location

Ref 1 - Open API 3.0 Specification https://github.com/OAI/OpenAPI-

Specification/blob/master/versions/3.0.2.md

Ref 2 - JSONAPI Specification and Best

Practice

https://jsonapi.org/

Ref 3 - REST Resource Naming Guide https://restfulapi.net/resource-naming/

Ref 4 - OAuth2 specification https://oauth.net/2/

Ref 5 - Swagger.io https://swagger.io/docs/specification/about/

Ref 6 - JSON Schema https://json-schema.org/

Ref 7 - AIDM Guidelines

https://guides.developer.iata.org/docs/aidm-guidelines

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
https://jsonapi.org/
https://restfulapi.net/resource-naming/
https://oauth.net/2/
https://swagger.io/docs/specification/about/
https://json-schema.org/
https://guides.developer.iata.org/docs/aidm-guidelines

